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Non trivial structure
of quantum vacuum Dynamical Casimir effect

Resonant photon creation
in oscillating high-Q cavities 

Ωmech ! GHzVery high oscillation frequencies 

Too high to be achieved with a 
purely mechanical oscillation 

MIR experiment

Ultra short laser pulses periodically irradiated on a semiconductor slab

Effective microwave mirror swichted on and off at very short intervals of time



Time-dependent conductivity
{

V → 0 ‘transparent’ material
V →∞ perfect conductorV (t)

The model L =
1
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δ(x− Lx/2)φ2
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Electromagnetic analogue [Barton+Calogeracos, Ann. Phys. 238, 227 (1995)]

Plane-polarized electromagnetic radiation propagating normally to an infinitesimally thin plasma sheet 
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Bz = (∇×A)z = ∂xAyEy = −∂tAy

disc Ay = 0
disc ∂xAy = −4πjy = −4πns e ∂tη

Lateral displacement 
of charge carriers 

Surface current density 

m ∂2
t η = −e ∂tAy(x = Lx/2)Eq. of motion 

Boundary conditions 

Boundary conditions 

φ↔ Ay/
√

4π V ↔ 4π ns e2/m



Two sets of solutions:

For t ≤ 0 the semiconductor slab is not irradiated, so V (t ≤ 0) = V0
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have a node at x = Lx/2 and do not see V (t)ϕm(x)
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t ≥ 0 V → V (t) kmx → kmx(t)For the slab is irradiated, so and 

Expansion in instantaneous modes: us(x, t > 0) =
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Resonant photon creation 

We focus on resonant effects induced by periodic oscillations in the conductivity

V (t) = V0 + (Vmax − V0) f(t)
f(0) = 0

f(τe) = 1

Perturbation theory:  When         V0Lx ! Vmax/V0 > 1 large changes in the conductivity induce         

kn(t) = k0
n(1 + εnf(t)) εn =

Vmax − V0

Lx(k0
n)2 + V0

(
1 + V0Lx

4

) " 1

small changes in the frequencies of the modes. We employ perturbation in       εn

k̃0
n ≡ k0

n(1 + εnf0)is a renormalized frequency, 

The modes are a set of coupled harmonic oscillators with periodic frequencies and couplings         

P̈ (s)
n +ω̃2

nP (s)
n = −2εn(k0

n)2(f−f0)P (s)
n −

∑

m

[
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field modes in 3D cavity 
with oscillating boundary

ω̃2
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n)2 + (πny/Ly)2 + (πnz/Lz)2

f(t) = f0 +
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fj cos(Ωjt + cj) Ωj = j
2π

T

Parametric resonance:  ω̃n ↔ Ωj
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P (s)(0)
n = A(s)

n (τn)eiω̃nt + B(s)
n (τn)e−iω̃ntzeroth order:

first order: ∂2
t P (s)(1)
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In the resonant case, a naive perturbative solution of the mode equations in powers of 

breaks down after a short amount of time, of order 

εn

Multiple scale analysis  resummation of the perturbative series
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j

new time scale:

solution valid for longer times, of order

Key idea of MSA: avoid secularities by imposing that any term e±iω̃nt in the RHS vanishes 
Ωj = 2 ω̃n

Ωj = |ω̃n ± ω̃m|
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Ωj = 2 ω̃n

Ωj = |ω̃n ± ω̃m|

Resonance conditions: 

Parametric resonance case: Ωj = 2 ω̃n

In general, there will be no mode coupling 

Mean number of created photon with frequency ω̃n = Ωj/2

〈Nn(t)〉 =
∑
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(
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The eigenfrequencies are not equidistantω̃n

In general, when 

single Fourier mode f(t) = f0 + fj cos(Ωjt + cj)

satisfy RC, then(j,m,n) (j′,m′,n′) do not
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exponential growth at a rate rcond = 2(k0
n)2fjεn/Ωj



Typical values of the conductivity

semiconductorSlab not illuminated

Numerical estimations 

V0 = 108m−1 − 1013m−1

Slab illuminated good conductor Vmax = 1016m−1

Small parameter εn : 10−8 ≤ εn ≤ 10−2 for a cavity of size Lx ! 10−2m

Profile example for the conductivity: linear ramps V (t) = V0 + (Vmax − V0)f(t)

Rate of photon creation: . It is independent of rcond = εn/T for Ωjτe ! 1 jand Ly, Lz ! Lx

It can be achieved with low values of Resonant condition: Ωj = 2πj/T ≈ GHz j ∈ [1, 10]

with femtosecond lasers w/ repetition freq. 2π/T ≈ 100MHz

Excitation time τe = 10−12sec 1Hz ≤ rcond ≤ 106HzΩjτe ! 1

fj =
1

πj(1− τe/T )
sin(πjτe/T )

πjτe/T
≈

{
1/πj if Ωjτe # 1
T/τej2π2 if Ωjτe $ 1
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Comparison with the oscillating mirror: 

rmov ≈ εmov/Tmov
εmov < 3× 10−8

Tmov = 10−9secTypical photoproduction rates for 
mechanically oscillating mirrors

rcond

rmov
=

εn

εmov

Tmov

T
= 106 Tmov

T
! 1

Ratio of photo-production rates

εn ≈ 10−2

2π/T ≈ MHz

εmov ≈ 10−8

Detuning

In order to have resonant effect, the external frequency must be 
tuned with the frequency of the resonant mode with a high accuracy. 

∆Ωj/Ωj < εn∆Ωj

Moving mirror case: ∆Ωmov ∆Ωmov/Ωmov < εmovdetuning

MIR experiment case: detuning

εn ! εmovSince fine tuning is much less severe in the MIR experiment



Summary

Toy scalar model to mimic photon creation by time-dependent, periodical changes in the conductivity

For changes in the conductivity of up to six orders of magnitude, the modes of the field oscillate with 
small amplitudes

Due to the short excitation time of the semiconductor (τe/T ! 1) it should be possible to tune 

 a cavity mode with a frequency of a high     Fourier harmonic of the time-dependent conductivityj

As long as it should be possible to produce resonant effects with ultra-short pulses 

 with repetition frequency well below the GHz range

 Advantages: much faster photo-production rates and milder fine tuning problems

jπτe/T ! 1


